If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+20x-5600=0
a = 3; b = 20; c = -5600;
Δ = b2-4ac
Δ = 202-4·3·(-5600)
Δ = 67600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{67600}=260$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-260}{2*3}=\frac{-280}{6} =-46+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+260}{2*3}=\frac{240}{6} =40 $
| 4b=4-5 | | 8=9x+44= | | -16t^2+96+432=0 | | 5+x=2x/3 | | 5x^2+20x-8800=0 | | 5x^2-20x-8800=0 | | 6x=2600 | | (0.8x-1.21)(18x+5)=x | | 0=12x^2-128x+240 | | (4x-9)(16x2-72x+81)=0 | | 0.6(22+t)=4t+8.1 | | 12(x-3)=98-8x | | 2.5^x=(0.4)^-x | | 5-6y=9-7y | | (2x+5)/4=-6 | | 2x+5/4=-6 | | 5x-12=3x+17 | | 3(x-0.7)=5.7-0.6(1-x) | | 24-7a=28-4a | | 6(2x+5)=45 | | 13-6x=28 | | 6x-40=12-(1/2)x | | 8x-13=37 | | 3((2p+1)-(p+1))=18 | | 5h9-4=h | | 5h÷9-4=h | | 2x+4=4x-30 | | 1500000=x-(490000+.32x) | | .15x=115 | | -4f+2f=-29 | | 7.5-4(1-5.5x)=-30.5 | | 18.5=-3.5(3h+7) |